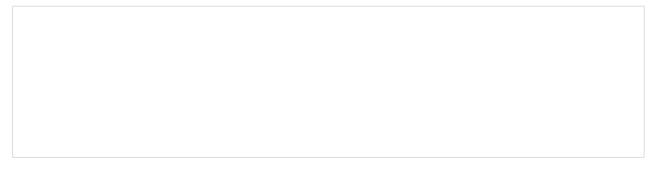
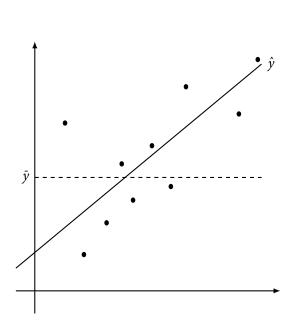
Lesson 12. ANOVA for Simple Linear Regression - Part 1


Note. In Part 2 of this lesson, you can run the R code that generates the outputs here in Part 1.


1 Overview

- Main question: is the overall model effective?
 - For simple linear regression, this is just another test of whether $\beta_1 = 0$
 - *Looking ahead...* when we have more than one predictor, we will test whether <u>all</u> the predictor coefficients equal 0, versus at least one of them not being 0
- Approach: compare the amount of variability in the response <u>explained</u> by the <u>model</u> to the amount of variability not explained by the model

2 Sums of squares

• The ANOVA sum of squares identity:

• Total sum of squares:

o Model sum of squares:

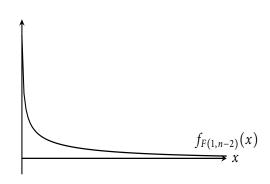
Error sum of squares:

3 The ANOVA table for simple linear regression

Source	df	Sum of Squares	Mean Square	F-Statistic
Model				
Error				
Total				

4 The ANOVA *F*-test for simple linear regression


- Question: Is the model as a whole effective?
- Formal steps:


1.	State	the	hypothes	es:
----	-------	-----	----------	-----

2. Calculate the test statistic:

3. Calculate the *p*-value:

 \circ If the conditions for simple linear regression hold, then the test statistic F follows

4. State your conclusion, based on the given significance level α :

If we reject H_0 (*p*-value $\leq \alpha$):

We reject H_0 because the p-value is less than the significance level $\underline{\alpha}$. We see significant evidence that the model is effective overall.

If we fail to reject H_0 (*p*-value > α):

We fail to reject H_0 because the p-value is greater than the significance level $\underline{\alpha}$. We do not see significant evidence that the model is effective overall.

Example 1. Let's continu effectiveness of the simple					ANOVA table	e that R outputs to test the	
Suppose we run the follow	Suppose we run the following R code:						
fit <- lm(Price ~ anova(fit)	<pre>fit <- lm(Price ~ Mileage, data = AccordPrice) anova(fit)</pre>						
The output is below:							
		A	A anova: 2 × 5				
		f Sum Sq	Mean Sq	F value	Pr(>F)		
	<int< td=""><td>> <dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td>-</td></int<>	> <dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	-	
	Mileage	1 687.6644	687.664433	72.25284	3.055011e-09		
	Residuals 2	8 266.4892	9.517473	NA	NA		
Use the output above to co	onduct the app	opriate tes	it.				
5 Other things to note							
• For simple linear regre	ession, there is	an <u>equiva</u> le	ence between	this ANC	OVA F-test an	d the <i>t</i> -test for slope:	

• When we have more than one predictor, these tests will have different purposes